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Figure 13. Comparison of our mass measurements to results in the literature. Panel a) shows the comparison to Okabe et al. (2010), panel b) to Mahdavi et al.
(2008), panel c) to Bardeau et al. (2007), and panel d) to Pedersen & Dahle (2007). For each comparison, we measure the mass within the overdensity radis r∆
of the respective work. The solid line indicates the one-to-one line, the long-dashed line shows the average of the mass ratios, and the dotted line the median.
For simplicity, the unweighted average is shown, since the measurements are correlated due to overlap in the source galaxy samples.

(see Paper I and Section 6 in this paper). The significant shear bias
that we find for fainter objects (15–30%, Fig. 6) is typical for KSB-
based algorithms (Massey et al. 2007), and thus is likely to affect
the study of Okabe et al. (2010), since a large fraction of the total
galaxy sample is fainter than our signal-to-noise criterion (Fig. 2).

Another difference between the two studies is the radial range
over which the profile is fit. Okabe et al. (2010) fit the shear profile
from the core (1 arcmin, corresponding to 200 kpc at z = 0.2) over
the entire field of view, i.e. out to ∼20 arcmin. For the outer radial
cut-off, we fit only out to 3 Mpc, which corresponds to ∼ 11 −
15 arcmin for most of the clusters in the comparison set. Numerical
simulations find that mass estimates based on fitting NFW profiles
to radii as large as those used in the Okabe et al. (2010) study are

likely to be biased at the 5–10% level (Becker & Kravtsov 2011;
Oguri & Hamana 2011; Bahé et al. 2011). The bias can be reduced
or essentially eliminated if the fit range is restricted to within ∼
2 × r500 (about 3 Mpc for the most massive clusters here) as in
this work. Note, however, that we did not find a significant mass
offset between fitting to 3 Mpc and fitting to 5 Mpc in our own data
(Section 9.2).

Possible biases arising due to the smaller inner radial cut-off
chosen by Okabe et al. (2010) are more difficult to estimate. Sim-
ulations do not indicate a significant bias introduced by fitting to
small scales (Bahé et al. 2011), but observational biases could play
a much larger role. For example, any residual contamination by
cluster members would be most pronounced, and most detrimental
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Planck Collaboration: Planck early results. XII.

Fig. 2. Scaled SZ signal measurements, Ỹ500, binned by richness, N200. The left-hand panel presents the results for the Johnston et al. (2007)
M500 − N200 relation, the right-hand panel for the Rozo et al. (2009) relation. In each case, the red diamonds show the bin-average, redshift-scaled
Ỹ500 calculated as the weighted mean of all individual measurements (e.g., Fig. 1) in the bin, where the weights are taken from the estimated filter
noise. The thick error bars show the corresponding uncertainty on the bin-average SZ signal, while the lighter error bars indicate the uncertainty
found by bootstrap analysis; they are larger due to the presence of intrinsic scatter within the bins, most notable at high richness (see Fig. 4). The
blue points represent the model prediction for each bin found by averaging, with the same weights as the data, the SZ signal expected from the
Y500 − M500 (Arnaud et al. 2010, STD case) and corresponding M500 − N200 relations. The Planck measurements are little affected by choice of
mass-richness relation, while the model points move significantly upward with the Rozo et al. (2009) mass calibration. Dashed lines in both panels
show the best fit power-law to the Planck individual cluster data points (i.e., prior to binning, as shown in Fig. 1); the parameters for these fits are
given in Table 2.

Fig. 3. Null test performed by randomising the angular positions of the clusters. The red diamonds show the bin-average, redshift-scaled measure-
ments, Ỹ500, as reported in the left-hand side of Fig. 2 with their corresponding measurement and bootstrap uncertainties; blue stars are the same
model points. The green triangles present the bin-averages for the randomised catalogue with uncertainties given only by the SZ measurement
errors. Results for the randomised catalogue are consistent with zero within their uncertainties. By comparison, the values for the real catalogue
represent highly significant detections of the SZ signal in all richness bins. Left-hand panel: results over the full richness range. Right-hand panel:
zoom into the region indicated by the dotted lines in the left-hand panel to highlight the low-richness end.

estimator:

Σ2
b =

1
Nb − 1

Nb∑

i=1

(
Ỹ500(i) − [Ỹ500]arith

)2 − 1
Nb

Nb∑

i=1

σ̃2
θ500

(i) (2)

where [Ỹ500]arith is the straight arithmetic mean in the bin. In the
figure we plot Σb/〈Ỹ500〉b, with 〈Ỹ500〉b being the weighted mean,
as above. For this calculation we clip all outliers at >5σ, where
σ is the individual cluster SZ signal error. The final result, es-
pecially at low richness, depends on the chosen clipping thresh-
old. The scatter is not Gaussian, as the large fractional intrinsic
scatter at low richness suggests. Below N200 ≈ 30, it becomes
difficult to draw clear conclusions concerning the scatter, as can
be appreciated by the fact that the bootstrap and pure SZ mea-
surement uncertainties begin to overlap in the left-hand panel.
For this reason, we only calculate the intrinsic scatter for the five
highest richness bins in the right-hand panel.

In conclusion, we detect a signal down to the lowest
mass systems in the MaxBCG catalog with high statistical

significance. This is the central result of our study. According to
the mass calibration from Johnston et al. (2007), we observe the
SZ signal in objects of mass as low as M500 = (4−5) × 1013 M&.

5. Discussion

Figure 2 summarises the central results of our study. There
are two notable aspects: firstly, we detect the SZ signal at
high significance over the entire mass range; moreover, simple
power laws adequately represent the observed scaling relations.
Secondly, we see a discrepancy in the Ỹ500−N200 relation relative
to expectations based on X-ray models and either the Johnston
et al. (2007) or Rozo et al. (2009) mass calibrations.

Fitting a power law of the form

Ỹ500 = Y500E−2/3(z)
(

DA(z)
500 Mpc

)2

= Y20

(N200

20

)α
(3)
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What	
  causes	
  this?	
  

It’s	
  not	
  just	
  weak	
  lensing.	
  	
  Systema@c	
  errors	
  in	
  X-­‐ray,	
  SZ,	
  and	
  O/
IR	
  mass-­‐observables	
  propagate	
  through	
  the	
  system	
  to	
  create	
  
(or	
  hide)	
  discrepancies.	
  	
  Lesson:	
  calibrate	
  mass-­‐observables	
  
jointly	
  in	
  fully	
  self-­‐consistent	
  way.	
  	
  If	
  you	
  do	
  this,	
  you	
  find	
  the	
  
field	
  is	
  in	
  a	
  significantly	
  worse	
  state	
  than	
  stated	
  systema9c	
  
errors	
  in	
  previous	
  published	
  works	
  would	
  have	
  you	
  believe.	
  



Cluster-­‐abundance	
  cosmology	
  

•  Cosmological	
  parameters:	
  
–  Dark	
  energy	
  equa@on	
  of	
  state:	
  w	
  =	
  

P/𝝆	
  	
  
–  Other	
  𝚲CDM	
  extensions:	
  fNL,	
  𝚺m𝝂	
  m𝝂	
  	
  

•  Dominant	
  systema@c	
  uncertainty	
  
in	
  w	
  constraints	
  is	
  cluster	
  mass	
  	
  

•  Absolutely	
  cri@cal	
  to	
  have	
  
empirical	
  measurements	
  of	
  total	
  
mass:	
  
–  Must	
  not	
  rely	
  en@rely	
  on	
  N-­‐body	
  

sims	
  
–  Weak	
  lensing	
  is	
  one	
  of	
  only	
  a	
  few	
  

direct	
  measures	
  of	
  total	
  mass	
  
–  Close	
  the	
  loop:	
  He	
  to	
  N-­‐body	
  

simulaHons	
  with	
  realism,	
  because	
  
that’s	
  where	
  the	
  mass	
  funcHon	
  
comes	
  from	
  

However, this problem is not as severe as one might
expect because the evolution in the mass function itself
is so dramatic, especially for !M!1. This part of the
review discusses what we have learned about structure
formation and cosmological parameters by observing
cluster evolution. It begins with a description of how
mass-function evolution depends on cosmological pa-
rameters and then considers the complications arising
from evolution of the observables themselves. It con-
cludes with a summary of current constraints on !M
from cluster evolution and a look at the prospects for
measuring !" and w with large cluster surveys.

1. Dependence on cosmology

Evolution of the mass function is highly sensitive to
cosmology because the matter density controls the rate
at which structure grows. When the mass function can
be expressed in terms of formulas like Eqs. "52#, "54#, or
"55#, its evolution is controlled entirely by the growth
function D"z#, which is a well-defined function of !M,
!", and w "Sec. III.B.4#. Small-amplitude density pertur-
bations grow as D"z#= "1+z#−1 when !M"z#!1, but per-
turbation growth stalls when !M"z##1. This effect
manifests itself most strongly in high-mass clusters be-
cause they are the latest objects to form in a hierarchical
cosmology with a CDM-like power spectrum "Evrard,
1989; Peebles et al., 1989; Oukbir and Blanchard, 1992;
Eke et al., 1996; Viana and Liddle, 1996#. The exponen-
tial dependence of the mass function on $"M ,z#
=D"z#$"M ,0# makes the effect quite dramatic for ob-
jects sufficiently massive that $"M ,0#%1.

Dependence of the mass function on !" and w is a
little more subtle. These parameters affect mass-
function evolution by altering the redshift at which
!M"z# departs significantly from unity for a given value
of !M at z=0 "Haiman et al., 2001#. The time at which
dark energy begins to dominate the dynamics of the uni-
verse is later for both smaller values of !" and smaller
"more negative# values of w "see Fig. 2#, leading to
greater evolution of the mass function between z$1 and
the present "Wang and Steinhardt, 1998; Weller et al.,
2002; Battye and Weller, 2003#.

Measurements of how the mass function changes with
redshift can provide additional information about !"

and w through the expansion rate of the universe. If the
mass function of clusters is precisely known, then num-
ber counts of clusters exceeding a given mass in each
redshift interval dz reveal the volume associated with
that redshift interval and can be used to determine the
dynamics of the universe’s expansion. The number of
clusters with mass &M on the celestial sphere in the
redshift interval dz is given by

dN
dz

"M# =
4'r(

2"z#c
H"z#

nM"M,z# . "62#

Figure 6 shows this number-redshift distribution for sev-
eral different cosmological models. Notice that the sta-
tistical power of cluster surveys is ultimately limited by

the total number of massive clusters in the observable
universe, which is of order 105.

2. Evolution of the observables

All of the mass-observable relations discussed in Sec.
III.C evolve with redshift, partly because the definition
of M200 is pinned to the critical density and partly be-
cause of galaxy-formation physics. Clusters of a given
mass are hotter earlier in time because their matter den-
sity is larger; both T200 and the square of the dark-matter
velocity dispersion for a fixed value of M200 vary with
redshift as H2/3"z# "Sec. III.C.2#. One therefore expects
Tlum and the square of the galaxy velocity dispersion to
depend on redshift in the same way, but it is possible
that the physics of galaxy formation adds additional red-
shift evolution that must be accounted for in precise cos-
mological measurements. Galaxy formation plays a
more explicit role in the mass-richness and M200-LX re-
lations, because the optical luminosities of galaxies
evolve with time and because the physics of galaxy

FIG. 6. Predicted number of clusters on the sky as a function
of redshift in different cosmologies. Upper panel shows the
number of clusters per unit redshift with M200&3
)1014h70

−1M! over the entire sky. Notice that there are a few
tens of thousands of such clusters on the sky in models with
!M=0.3, most of them at z%1. There are many fewer massive
clusters at z&0.5 in the *CDM model with !M=1 because
cluster evolution is so rapid in that case. The lower panel
shows the numbers of clusters with M200&1)1015h70

−1M!. Dif-
ferences between models with !M!0.3 but differing values of
!" and w should be detectable in large cluster surveys contain-
ing $104 clusters and extending to z$1.
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Figure 1
Yields from modern surveys of clusters used for cosmological studies are shown, with symbol size
proportional to median redshift. Samples selected at optical ( gray filled circles), X-ray (red squares), and
millimeter (blue triangles) wavelengths are discussed in Section 3.2. Stars and horizontal lines (purple) show
full sky counts of halos expected in the reference !CDM cosmology (see Section 2) with masses above 1015

and 1014 M!. Such halo samples have median redshifts of 0.4 and 0.8, respectively.

proportional to median sample redshift, and symbol types encode the selection method. The stars
at far right show theoretical estimates of the all-sky number and median redshift of halos with
masses above 1014 M! and 1015 M!. The former mass limit roughly marks the transition from
galaxy groups to galaxy clusters, whereas the latter marks the deepest potential wells with ICM
temperatures kT ! 5 keV. Current surveys have made good progress, but the full population of
clusters remains largely undiscovered.

Optical and X-ray surveys have the longest histories, but these traditional methods are being
complemented by new approaches. Space-based surveys in the near-IR extend optical methods to
z > 1 (Eisenhardt et al. 2008, Demarco et al. 2010), and the first few clusters identified by their
gravitational lensing signature have been published (Wittman et al. 2006). Ongoing millimeter
surveys have released the first sets of clusters discovered through the Sunyaev-Zel’dovich (SZ)
effect (Marriage et al. 2010, Vanderlinde et al. 2010, Planck Collaboration 2011a), with the promise
of much more to come.

Panoramic, multiwavelength surveys of common sky areas offer profound improvements to our
understanding of clusters as astrophysical systems, which in turn further empowers their use for
cosmological studies. And while considerable challenges to interpretation and modeling of survey
data certainly exist, a halo model framework, discussed in Section 2, is rising to meet this task.

1.2. Cosmic Calibration via Simulations
A feature common to many techniques that study dark energy is the nature of the input data, which
consist of catalogs of properties, x, of discrete objects that lie along our past light-cone. Upcoming
wide-field surveys should generate x-catalogs of large dimension that will be distilled to constrain
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Measured SZ spectrum 
of A2163


The	
  Sunyaev-­‐Zel’dovich	
  effect	
  

Take-­‐home	
  message	
  #1	
  
	
  SZ	
  signal	
  is	
  not	
  an	
  emissive	
  process	
  but	
  a	
  
spectral	
  disor@on,	
  so	
  with	
  beam	
  well	
  
matched	
  to	
  the	
  size	
  of	
  clusters,	
  it’s	
  nearly	
  
redshiF	
  independent.	
  

Take-­‐home	
  message	
  #2	
  
	
  SZ	
  signal	
  is	
  a	
  direct	
  probe	
  of	
  total	
  thermal	
  
energy,	
  and	
  so	
  is	
  a	
  good	
  proxy	
  for	
  cluster	
  
mass.	
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the SZE caused by the hot thermal distribution of electrons provided by the ICM

of galaxy clusters. CMB photons passing through the center of a massive cluster

have only a� 1% probability of interacting with an energetic ICM electron. The

resulting inverse Compton scattering preferentially boosts the energy of the CMB

photon by roughly kBTe/mec
2, causing a small (⇥1 mK) distortion in the CMB

spectrum. Figure 1 shows the SZE spectral distortion for a fictional cluster that is

over 1000 times more massive than a typical cluster to illustrate the small effect.

The SZE appears as a decrease in the intensity of the CMB at frequencies below

⇥218 GHz and as an increase at higher frequencies.
The derivation of the SZE can be found in the original papers of Sunyaev &

Zel’dovich (Sunyaev & Zel’dovich 1970, 1972), in several reviews (Sunyaev &

Zel’dovich 1980a, Rephaeli 1995, Birkinshaw 1999), and in a number of more re-

cent contributions that include relativistic corrections (see below for references).

This review discusses the basic features of the SZE that make it a useful cosmo-

logical tool.

Figure 1 The cosmic microwave background (CMB) spectrum, undistorted (dashed

line) and distorted by the Sunyaev-Zel’dovich effect (SZE) (solid line). Following

Sunyaev & Zel’dovich (1980a) to illustrate the effect, the SZE distortion shown is for

a fictional cluster 1000 times more massive than a typical massive galaxy cluster. The

SZE causes a decrease in the CMB intensity at frequencies ⇥218 GHz and an increase
at higher frequencies.
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(2006) and Nagai et al. (2007b), who find that the scatter in
the Mtot–Mgas relation is approximately 11% in Mtot for a given
Mgas. Most of this scatter results from the X-ray analysis, as
intrinsic scatter of the gas mass for a fixed total mass in simulated
clusters is < 5%.

4.3. Mtot–YX Relation

The final Mtot proxy we use is the most robust X-ray mass
estimator proposed by KVN. The quantity, YX , is defined as

YX = TX × Mgas,X, (10)

where TX is the temperature derived from fitting the cluster X-ray
spectrum integrated within the projected radii 0.15 r500 − 1 r500,
and Mgas,X is the hot gas mass within the sphere r500, derived
from the X-ray image.

The quantity that YX approximates is the total thermal energy
of the ICM within r500, and also the integrated low-frequency
Sunyaev–Zeldovich flux (Sunyaev & Zeldovich 1972). The total
thermal energy, Y, was found in the simulations to be a very good
indicator of the total cluster mass (da Silva et al. 2004; Motl et al.
2005; Hallman et al. 2006; Nagai 2006). In the simplest self-
similar model (Kaiser 1986, 1991), Y scales with the cluster
mass as

Mtot ∝ Y 3/5 E(z)−2/5 (11)

(e.g., KVN). This scaling is a consequence of the expected
evolution in the Mtot − T relation (Equation (4)) and the
assumption of the self-similar model that fg is independent of
cluster mass. Hydrodynamic simulations show that the expected
scaling Equation (11) is indeed valid, and moreover, the relation
shows a smaller scatter in M for fixed Y than, e.g., the M − TX

relation. The primary reason is that the total thermal energy of
the ICM is not strongly disturbed by cluster mergers (Poole et al.
2007), unlike TX or X-ray luminosity (Ricker & Sarazin 2001).

It is reassuring that the Mtot −Y scaling also appears to be not
very sensitive to the effects of gas cooling, star formation, and
energy feedback (Nagai 2006); these effects do not affect the
power slope or the evolution law, although change somewhat the
overall normalization. The stability of Y is primarily explained
by the fact that gas cooling tends to remove from the ICM the
lowest entropy gas (Voit & Bryan 2001), increasing the average
temperature of the remaining gas and thus affecting TX and Mgas
in opposite ways. Direct hydrodynamic simulations of Nagai
et al. (2007a) confirm this expectation.

As discussed in KVN, the X-ray proxy, YX , is potentially even
more stable with respect to cluster mergers than the “true” Y.
In the postmerger state, for example, the temperature and thus
Y is biased somewhat low because of incomplete dissipation
of bulk ICM motions. The same bulk motions, however, cause
the gas density fluctuations, which leads to an overestimation of
Mgas from the X-ray analysis (Mathiesen et al. 1999). Therefore,
the merger-induced deviations of the average temperature and
derived Mgas are anticorrelated and hence partially canceled
out in YX . Even the strongest mergers in the simulated cluster
sample used in KVN do not lead to large deviations of YX from
the mean scaling. There is also no detectable systematic offset
in the normalization of the Mtot–YX relations for relaxed and
unrelaxed clusters. The upper limit for the difference in Mtot
for fixed YX within the KVN simulated sample is 4% (see their
Table 2).

Since YX is so insensitive to the cluster dynamical state, it
is straightforward to calibrate the Mtot–YX relation using the
sample of Chandra clusters from V06, and then it is reasonable

Figure 11. Calibration of the Mtot–YX relation. Points with errorbars show
Chandra results from Vikhlinin et al. (2006) with seven additional clusters
(Section 4). The dashed line shows a power law fit (excluding the lowest mass
cluster) with the free slope. The dotted line shows the fit with the slope fixed
at the self-similar value, 3/5 (parameters for both cases are given in Table 3).
Open points show weak lensing measurements from Hoekstra (2007; these data
are not used in the fit); the strongest outlier is A1689 (open star), a known case
of large-scale structures superposed along the line of sight.

to assume that the same relation is also valid for unrelaxed
clusters. The observed Mtot–YX relation does follow very closely
the expected self-similar scaling of Equation (11) (Figure 11;
see also Arnaud et al. 2007). The best-fit power law is

ME(z)2/5 ∝ Y 0.53±0.04
X (12)

when all clusters are included. The marginal deviation of the
slope from a self-similar value of 3/5 is driven primarily by
the lowest-temperature cluster (MKW4), for which both the
total mass and YX measurements are most uncertain. Excluding
this cluster (its Mtot is in any case smaller than the lower mass
threshold in the cluster mass functions in our samples), the
power law fit becomes

ME(z)2/5 ∝ Y 0.57±0.05
X , (13)

fully consistent with the self-similar relation (shown by a dashed
line in Figure 11). We use the latter fit for the YX-based cluster
mass estimates. Note that Sun et al. (2008) find a slope of 0.57
when they fit jointly their galaxy group sample with the V06
clusters, supporting the notion that the MKW4 measurement can
be ignored. The normalization constant is provided in Table 3
(it is consistent with the XMM-Newton results of Arnaud et al.
2007). Note that the h-dependence of the normalization constant
in the Mtot–YX relation is ∝ h1/2, different from the usual h−1

in, e.g., the Mtot–TX relation. This is the consequence of the
h-dependence of the X-ray Mtot and Mgas estimates; see KVN
for details.

The overall uncertainties of the calibration of the Mtot–YX

are identical to those for the Mtot–TX relation (see Section 4.1),
with the exception that we do not expect an additional source
of uncertainty related to the transfer of calibration from relaxed
clusters to the entire population. As for the Mtot–TX relation, we
also have to rely on the simulations for an estimate of redshift-
dependent departures from the expected self-similar scaling.

Vikhlinin	
  et	
  al.	
  (2009)	
  

•	
  Hydrosta@c	
  equilibrium	
  	
  
◌	
  Weak	
  lensing	
  



Weak	
  lensing	
  



Weak	
  lensing	
  

Williamson,	
  Oluseyi,	
  &	
  Roe	
  (2007)	
  





SPT	
  targeted	
  weak	
  lensing	
  sample	
  

o 	
  33	
  clusters	
  at	
  0.3	
  <	
  z	
  <	
  1.3	
  
o 	
  Complete	
  SZ,	
  X-­‐ray	
  coverage	
  
o 	
  Spectroscopy,	
  Spitzer	
  NIR,	
  and	
  
mul@band	
  OIR	
  from	
  the	
  ground	
  

Ground	
  WL	
  sample	
  
• 	
  Magellan/Megacam	
  camera	
  
• 	
  19	
  clusters	
  at	
  0.3	
  <	
  z	
  <	
  0.6	
  
• 	
  Imaging	
  in	
  (u)gri	
  in	
  2011A+B	
  

Space	
  WL	
  sample	
  
• 	
  HST/ACS	
  camera	
  
• 	
  14	
  clusters	
  at	
  0.6	
  <	
  z	
  <	
  1.3	
  
• 	
  Imaging	
  in	
  F606W	
  and	
  F814W	
  
in	
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  imaging	
  with	
  VLT	
  
• 	
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Figure 6. Comparison of shear-measurement accuracy from different meth-
ods, in terms of their mean residual shear offset 〈c〉 and mean shear-
calibration bias 〈m〉. In the top panel, these parameters have been averaged
over both components of shear and all six sets of images; the bottom panel
includes only image sets A, B, C and F, to avoid the two highly elliptical
PSFs. Note that the entire region of these plots lie inside the grey band that
indicated good performance for methods in Fig. 3 of STEP1. The results
from methods C1, SP, MS1 and ES1 are not shown here.

pixels into a number of smaller regions. Neither approach is ideal.
Independent experiments by Tim Schrabback, running objects with
Gaussian radial profiles though his implementation of KSB+, have
shown that pixellization can cause a systematic underestimation of
ε and Psm, and an overestimation of Psh. This effect can be up to
∼10 per cent for small objects. However, as stars and faint galax-
ies are similarly affected, the error on the shear estimate approxi-
mately cancels. An integration using linearly interpolated subpixels

makes the measurement more stable to the subpixel position of the
object centroid, but slightly increases the individual bias. Bacon
et al. (2001) tested a variant of the C1 method, and found a similar
∼13 per cent overall calibration bias, which was used to correct
subsequent measurements. With hindsight, the different calibration
of γ 1 and γ 2 are also already visible in that work.

The MJ2, KK and TS methods are least affected by pixellization.
This might have suggested that the extraction of a shear estima-
tor by shearing circular objects removes the problem, were it not
for the peculiar behaviour of the RN method. For this method, im-
age sets A and C follow the usual pattern that m1 > m2, but that
bias is reversed when PSF is circular (image set F and the zero-
ellipticity components of PSFs D and E). The SP method is similar.
Strangely, the JB method, which ostensibly tries the hardest to treat
pixellization with mathematical rigour, displays the most difference
between m1 and m2. However, this method does break a trend by
not having an overall negative shear calibration bias. If this bias is
indeed caused by pixellization, this method appears to have most
successfully eliminated it.

Pixellization could also hinder shear measurement, and bring
about the observed results, via two additional mechanisms. First,
it may exaggerate astrometric errors in the PSF, and produce the
consequences described in the previous section. We would be un-
able to distinguish these effects. Secondly, the undersampling of
objects may also fundamentally prevent the measurement of their
high order shape moments. All the STEP2 PSFs (and hence the
galaxies) are Nyquist sampled. It would be unfortunate for lensing
if Nyquist sampling were theoretically sufficient to measure astrom-
etry, but not shapes. As it happens, for methods other than MJ, the
pixellization bias is more pronounced for image set C (with poor
seeing, and therefore better sampled) than on image set A (with good
seeing). This suggests that the pixellization effects are not due to
undersampling. The STEP1 simulations had the same pixel scale but
worse seeing (∼1-arcsec FWHM), so objects were better sampled
there.

We therefore hypothesise that the circularizing effects of pixel-
lization explain the general underestimation of shear and the differ-
ential calibration of the γ 1 and γ 2 components. Indeed, a dedicated
study of simulated images with varying pixel scales by High et al.
(in preparation) supports this view. They found that the shear cali-
bration bias of the RRG method tends to zero with infinitely small
pixels, grows linearly with pixel scale, and that the bias m2 ≈

√
2m1.

Because of the isotropy of the Universe, this differential calibration
of shear estimators ought not affect two-point cosmic shear statis-
tics. However, it can certainly affect the reconstruction of individ-
ual cluster mass distributions, and is inherently quite disconcerting.
The next STEP project will feature sets of images with varying
pixel scales to investigate this effect on a wider scale. In the
mean time, dealing properly with pixellization will provide a
promising direction for further improvement in shear-measurement
methods.

5.4 Galaxy morphology

The introduction of complex galaxy morphologies tends to hinder
shear measurement with KSB+ methods. The shear calibration bias
is more negative with image set A (shapelet galaxies) than with
image set B (simple galaxies) for the C1, C2, MH, SP, MS1, TS and
ES1 implementations. Of the implementations of KSB+, only HH
and MS2 reverse this trend. This is perhaps not surprising, given
the inherent limitation of KSB+ in assuming that the ellipticity of
a galaxy does not change as a function of radius.
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Shear	
  pipelines	
  that	
  we	
  use:	
  
• 	
  ground	
  data:	
  Henk	
  Hoekstra	
  (HH)	
  
• 	
  space	
  data:	
  Tim	
  Schrabback	
  (TS)	
  

Full	
  pipelines	
  blind-­‐tested	
  by	
  the	
  Shear	
  
TesHng	
  Program	
  (STEP:	
  Heymans	
  et	
  al.	
  
2006;	
  Massey	
  et	
  al.	
  2007).	
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realis@c	
  point-­‐spread	
  func@ons.	
  

STEP	
  bias	
  sta@s@cs:	
  

Shear	
  code	
  recovers	
  truth	
  with	
  no	
  measurable	
  
addi9ve	
  bias	
  (c)	
  and	
  with	
  mul9plica9ve	
  bias	
  
(m)	
  of	
  2%	
  or	
  beRer.	
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functions are obtained, in which the coefficients f 2,0 = f 2,2 = 0 and
hence the deconvolved galaxy appears round. All PSF coefficients
were obtained to n ! 12, and galaxy coefficients to n ! 8.

The weights applied to each galaxy are optimized for small shears,
using the same prescription as the MJ2 method in equation (35). The
shear responsivity R is similarly calculated using equation (36),
averaged over the entire galaxy population or within size and mag-
nitude bins as necessary.

The evolution of the RN method during the STEP2 analysis high-
lights the utility of even one set of STEP simulations. In the first
submission, it was noted that a few outlying shear estimates in each
field were destabilizing the result. These were identified as close
galaxy pairs, so an algorithm was introduced to remove these, and
the size and magnitude cuts were also gradually adjusted over sev-
eral iterations to improve stability.

3.4.3 Other methods not tested in this paper

IM2SHAPE (Bridle et al. 2001) performs a similar PSF deconvolution,
but parametrizes each galaxy and each PSF as a sum of elliptical
Gaussians. The best-fitting parameters are obtained via a Markov
Chain Monte Carlo sampling technique. Concentric Gaussians are
usually used for the galaxies, in which case the ellipticity is then a
direct measure of the shear via equations (1) and (2). For alternative
galaxy models using non-concentric Gaussians, shear estimators
like that of the JB method could also be adopted. The ‘active’ or
‘passive’ classification of this method is somewhat open to interpre-
tation.

4 R E S U LT S

Individual authors downloaded the simulated images and ran their
own shear-measurement algorithms, mimicking as closely as pos-
sible the procedure they would have followed with real data. None
of the authors knew the input shears at this stage. Their galaxy
catalogues were then compiled by Catherine Heymans and Richard
Massey. Independently of the other authors, the mean shears in each
image were compared to the input values. Galaxies in the measured
catalogues were also matched to their rotated counterparts and to ob-
jects in the input catalogues, with a 1-arcsec tolerance. Except for
determining false detections or stellar contamination in the mea-
sured catalogues (which were removed in the matched catalogues),
no results using the input shapes are presented in this paper.

In this section, we present low-level data from the analyses, in
terms of direct observables. For further discussion and interpretation
of the results in terms of variables concerning global survey and
instrumental performance, see Section 5. To conserve space, only a
representative sample of the many results are displayed here. The
rest is described in the text, in relation to the illustrative examples,
and is also available from the STEP website.2 First, we will describe
the measurement of stars, then the number density of galaxies and
then shears in each set of images. Finally, we will split the galaxy
catalogues by objects’ observed sizes and magnitudes.

4.1 PSF modelling

The first task for all shear-measurement methods is to identify stars
and measure the shape of the PSF. Table 5 lists parameters of the
PSF model generated by the TS implementation of KSB+. These
quantities are more familiar than those derived analytically from
the shapelet models, and also demonstrate the differences between
measured PSF ellipticities and inputs described in Table 1. The few

Table 5. PSF models for the six sets of images used in the STEP2 anal-
ysis by the TS implementation of KSB+, averaged over stars in the sim-
ulated images. These quantities may be more familiar to some readers.
FLUX RADIUS is directly from SEXTRACTOR, and the ellipticities are all
measured using a Gaussian weight function of rms size rg = 0.6 arcsec=3
pixels.

Image set PSF model from TS implementation of KSB+
FLUX RADIUS ε1 ε2

(arcsec) (per cent) (per cent)

A 0.334 −(0.68 ± 0.10) (1.21 ± 0.07)
B 0.334 −(0.66 ± 0.07) (1.28 ± 0.05)
C 0.406 −(0.47 ± 0.07) (0.97 ± 0.06)
D 0.390 (11.49 ± 0.11) (2.20 ± 0.14)
E 0.390 −(2.21 ± 0.14) (11.29 ± 0.16)
F 0.392 −(0.01 ± 0.12) (0.01 ± 0.01)

per cent polarizations measured for components of PSFs D and E
that should be zero are typical of several other methods. These may
explain the peculiar residual shear offsets described in Section 5.3.

4.2 Galaxy number counts and the false detection rate

The methods used a variety of object-detection algorithms and cata-
logue selection criteria. For each method and each PSF, Table 6 lists
the density of objects per square arcminute, ngals, their mean mag-
nitude, and the percentage of false detections. Clearly, methods that
are able to successfully measure the shapes of more (fainter) galax-
ies, while avoiding false detections, will obtain a stronger measure-
ment of weak lensing, especially because the lensing signal grows
cumulatively with galaxy redshift. The false detection and stellar
contamination rate is generally low, and the effective survey depth
is lowered by less than 0.1 mag for all methods after matching ro-
tated and unrotated catalogues. Nor does matching has a significant
effect on the overall mean polarization of galaxies, which is always
consistent with zero both before and after matching – as might not
have been the case in the presence of selection effects (Bernstein &
Jarvis 2002; Hirata & Seljak 2003).

Table 6 also shows the measured dispersion of shear estimators
σγ for each population. This statistic represents a combination of the
intrinsic ellipticity of galaxies and the shape measurement/PSF cor-
rection noise introduced by each method. Lower values will produce
stronger measurements of weak lensing. Since shear measurement
is more difficult for smaller or fainter galaxies, and the intrinsic mor-
phology distribution of galaxies varies as a function of magnitude
in images other than set B, ngals and σγ are likely to be correlated
in a complicated fashion. Galaxy selection effects and weighting
schemes are discussed in Sections 5.6 and 5.7.

4.3 Shear calibration bias and residual shear offset

As with STEP1, we assess the success of each method by comparing
the mean shear measured in each image with the known input shears
γ

input
i . We quantify deviations from perfect shear recovery via a

linear fit that incorporates a multiplicative ‘calibration bias’ m and an
additive ‘residual shear offset’ c. With a perfect shear-measurement
method, both of these quantities would be zero. Since the input shear
is now applied in random directions, we measure two components
each of m and c, which correspond to the two components of shear:

〈γ̃1〉 − γ
input
1 = m1γ

input
1 + c1

〈γ̃2〉 − γ
input
2 = m2γ

input
2 + c2.

(43)
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Calibra@on	
  to	
  N-­‐body	
  simula@ons	
  

WL	
  NFW	
  masses	
  recover	
  truth	
  with	
  overall	
  bias	
  of	
  -­‐5%	
  to	
  -­‐10%.	
  

ArHcle	
   NFW	
  WL	
  mass	
  bias	
  

Becker	
  &	
  Kravtsov	
  
2012	
  

-­‐5%	
  to	
  -­‐10%	
  

Rasia	
  et	
  al.	
  2012	
   -­‐5%	
  to	
  -­‐10%	
  

Bahe	
  et	
  al.	
  2012	
   -­‐5%	
  

High	
  et	
  al.	
  2012	
   -­‐5%	
  to	
  -­‐10%	
  

Our	
  tests:	
  
• 	
  Use	
  two	
  flavors	
  of	
  Dark	
  Energy	
  Survey	
  mocks	
  at	
  220	
  
deg2	
  and	
  5k	
  deg2;	
  fake	
  galaxies	
  with	
  realis@c	
  color,	
  
magnitude,	
  and	
  clustering	
  proper@es	
  (ADDGALS,	
  R.	
  
Wechsler	
  et	
  al.)	
  

• 	
  Replicate	
  our	
  color	
  and	
  magnitude	
  selec@on	
  for	
  all	
  
massive	
  0.25	
  <	
  z	
  <	
  0.65	
  halos	
  
• 	
  Also	
  geared	
  up	
  on	
  simula@ons	
  from	
  Becker	
  &	
  
Kravtsov	
  (2012)	
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  joint	
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  masses	
  

Mean	
  calibraHon	
  from	
  ground	
  
sample:	
  1.26	
  ±	
  0.16	
  

Mean	
  calibraHon	
  from	
  space	
  
sample:	
  1.16	
  ±	
  0.26	
  

High	
  et	
  al.	
  (in	
  prep.)	
  



WL	
  calibraHon	
  of	
  M	
  –	
  YSZ:	
  	
  
A	
  first	
  look	
  at	
  the	
  SPT	
  data	
  
YSZ	
  measured	
  with	
  Rapid	
  Gridded	
  
Likelihood	
  Es@mator	
  (T.	
  Montroy	
  et	
  al.	
  
in	
  prep.).	
  

Assume	
  self-­‐similar	
  scaling	
  with	
  free	
  
normaliza@on	
  parameter,	
  

19	
  SPT-­‐detected	
  clusters	
  used	
  here:	
  
• 	
  7	
  from	
  space	
  sample	
  
• 	
  12	
  from	
  ground	
  sample	
  

Aghanim	
  et	
  al.	
  (2012)	
  and	
  Applegate	
  et	
  
al.	
  (2012)	
  have	
  also	
  given	
  evidence	
  for	
  
-­‐30%	
  WL	
  biases	
  in	
  LoCuSS	
  results	
  
(Okabe	
  et	
  al.	
  2010;	
  Marrone	
  et	
  al.	
  
2012).	
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Fig. 6.— Assuming a ⇤CDM cosmology with massive neutrinos,
the two-dimensional marginalized constraints on ⌃m⌫ and
�8. Contours show the 68% and 95% confidence regions for
the CMB+H0+BAO (gray, dashed), CMB+H0+BAO+SPTCL
(orange, solid), and CMB+H0+SPTCL (blue, dot-dashed) data
sets. The SPTCL data improves the constraints on �8 and ⌃m⌫ ,
by factors of 1.8 and 1.4, respectively.

Recent measurements have shown a ⇠2� preference for
increased damping in the tail of the CMB power spec-
trum (Dunkley et al. 2011; Keisler et al. 2011). This
damping could be caused by several di↵erent physical
mechanisms, such as a high primordial helium abun-
dance, a running of the scalar spectral index, or addi-
tional relativistic species. This last explanation is partic-
ularly timely because of recent measurements from atmo-
spheric (Aguilar-Arevalo et al. 2010) and nuclear reactor
(Mention et al. 2011) neutrino oscillation experiments

that find some evidence for a sterile neutrino species. It
has been pointed out that these measurements are most
consistent with two sterile neutrinos and ⌃m

⌫

& 1.7 eV
(Kopp et al. 2011). Therefore, we consider the joint cos-
mological constraints on Ne↵ and ⌃m

⌫

to compare with
these terrestrial results.
With only three neutrino species, we would expect

Ne↵= 3.046, a value slightly larger than three because
of energy injection from electron-positron annihilation
at the end of neutrino freeze-out (Dicus et al. 1982;
Lopez et al. 1999; Mangano et al. 2005). As Ne↵ in-
creases, the contribution to the gravitational potential
of the additional neutrino perturbations boosts the early
growth of dark matter perturbations (Bashinsky & Sel-
jak 2004), which also increases �8 (Hou et al. 2011). As
explained in Section 5.2, adding neutrino mass at the
levels considered here only a↵ects the low-redshift uni-
verse, suppressing structure formation, and lowering �8
at z = 0. Therefore, increasing Ne↵ will also allow an in-
creasing ⌃m

⌫

. Keisler et al. (2011) used a combination
of CMB+H0+BAO data to constrain ⌃m

⌫

< 0.69 eV at
a 95% CL, �8 = 0.803± 0.056, and Ne↵= 3.98± 0.43.
In Figure 7, we show the constraints on Ne↵ , ⌃m

⌫

,
and �8, using the CMB+H0+BAO data set, before and
after including the SPTCL data. In Table, 5 we give
the marginalized constraints. When varying Ne↵ we as-
sume consistency with BBN for our constraints. Us-
ing the CMB+H0+BAO+SPTCL data set, we constrain
⌃m

⌫

< 0.63 eV at a 95% CL, �8 = 0.777 ± 0.031, and
Ne↵= 3.91 ± 0.42. Relative to Keisler et al. (2011), the
addition of the SPTCL data improves the constraints on
�8 by a factor of 1.8, and reduces the upper limit on ⌃m

⌫

by a factor of 1.1. However, the addition of the SPTCL
data does noticeably sharpen the peak in the marginal-
ized one-dimensional likelihood for ⌃m

⌫

, such that the
maximum likelihood constraint peaks away from zero,
⌃m

⌫

= 0.34± 0.17 eV.
As noted in Keisler et al. (2011), models of the CMB

power spectrum that include increased damping are fa-
vored at the 1.6-1.9� level. However, even if one accepts
the need for an extra parameter to explain the damping,
its physical origin is unclear. Regardless, considering the
Ne↵ model extension is instructive to help understand
the model dependency of the neutrino mass constraints.
Keisler et al. (2011) considered three models to explain
the excess damping and found that the Ne↵ model had
the most significant e↵ect on �8. The inclusion of Ne↵
also weakens the constraints on ⌃m

⌫

, because of the de-
generacies between Ne↵ , �8, and ⌃m

⌫

. In the combined
cosmological data set, the SPTCL data mainly constrains
�8, which helps to break this degeneracy and indirectly
improve the neutrino mass constraints. Therefore, the
⌃m

⌫

constraint from the Ne↵ model can be considered a
conservative upper limit on ⌃m

⌫

regardless of the phys-
ical mechanism for the increased damping.

5.3. ⇤CDM with f
NL

Finally, we consider a ⇤CDM cosmology with primor-
dial non-Gaussianity. Standard inflationary cosmology
predicts that density fluctuations in the universe were
seeded by random Gaussian fluctuations. However, in-
flationary models can be constructed that predict sig-
nificant levels of non-Gaussianity (e.g., Bartolo et al.
2004). The leading order non-Gaussian term is typi-
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Recent measurements have shown a ⇠2� preference for
increased damping in the tail of the CMB power spec-
trum (Dunkley et al. 2011; Keisler et al. 2011). This
damping could be caused by several di↵erent physical
mechanisms, such as a high primordial helium abun-
dance, a running of the scalar spectral index, or addi-
tional relativistic species. This last explanation is partic-
ularly timely because of recent measurements from atmo-
spheric (Aguilar-Arevalo et al. 2010) and nuclear reactor
(Mention et al. 2011) neutrino oscillation experiments

that find some evidence for a sterile neutrino species. It
has been pointed out that these measurements are most
consistent with two sterile neutrinos and ⌃m

⌫

& 1.7 eV
(Kopp et al. 2011). Therefore, we consider the joint cos-
mological constraints on Ne↵ and ⌃m

⌫

to compare with
these terrestrial results.
With only three neutrino species, we would expect

Ne↵= 3.046, a value slightly larger than three because
of energy injection from electron-positron annihilation
at the end of neutrino freeze-out (Dicus et al. 1982;
Lopez et al. 1999; Mangano et al. 2005). As Ne↵ in-
creases, the contribution to the gravitational potential
of the additional neutrino perturbations boosts the early
growth of dark matter perturbations (Bashinsky & Sel-
jak 2004), which also increases �8 (Hou et al. 2011). As
explained in Section 5.2, adding neutrino mass at the
levels considered here only a↵ects the low-redshift uni-
verse, suppressing structure formation, and lowering �8
at z = 0. Therefore, increasing Ne↵ will also allow an in-
creasing ⌃m

⌫

. Keisler et al. (2011) used a combination
of CMB+H0+BAO data to constrain ⌃m
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< 0.69 eV at
a 95% CL, �8 = 0.803± 0.056, and Ne↵= 3.98± 0.43.
In Figure 7, we show the constraints on Ne↵ , ⌃m

⌫

,
and �8, using the CMB+H0+BAO data set, before and
after including the SPTCL data. In Table, 5 we give
the marginalized constraints. When varying Ne↵ we as-
sume consistency with BBN for our constraints. Us-
ing the CMB+H0+BAO+SPTCL data set, we constrain
⌃m

⌫

< 0.63 eV at a 95% CL, �8 = 0.777 ± 0.031, and
Ne↵= 3.91 ± 0.42. Relative to Keisler et al. (2011), the
addition of the SPTCL data improves the constraints on
�8 by a factor of 1.8, and reduces the upper limit on ⌃m

⌫

by a factor of 1.1. However, the addition of the SPTCL
data does noticeably sharpen the peak in the marginal-
ized one-dimensional likelihood for ⌃m

⌫

, such that the
maximum likelihood constraint peaks away from zero,
⌃m

⌫

= 0.34± 0.17 eV.
As noted in Keisler et al. (2011), models of the CMB

power spectrum that include increased damping are fa-
vored at the 1.6-1.9� level. However, even if one accepts
the need for an extra parameter to explain the damping,
its physical origin is unclear. Regardless, considering the
Ne↵ model extension is instructive to help understand
the model dependency of the neutrino mass constraints.
Keisler et al. (2011) considered three models to explain
the excess damping and found that the Ne↵ model had
the most significant e↵ect on �8. The inclusion of Ne↵
also weakens the constraints on ⌃m

⌫

, because of the de-
generacies between Ne↵ , �8, and ⌃m

⌫

. In the combined
cosmological data set, the SPTCL data mainly constrains
�8, which helps to break this degeneracy and indirectly
improve the neutrino mass constraints. Therefore, the
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constraint from the Ne↵ model can be considered a
conservative upper limit on ⌃m

⌫

regardless of the phys-
ical mechanism for the increased damping.

5.3. ⇤CDM with f
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Finally, we consider a ⇤CDM cosmology with primor-
dial non-Gaussianity. Standard inflationary cosmology
predicts that density fluctuations in the universe were
seeded by random Gaussian fluctuations. However, in-
flationary models can be constructed that predict sig-
nificant levels of non-Gaussianity (e.g., Bartolo et al.
2004). The leading order non-Gaussian term is typi-
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ors of A
X

= 5.77± 0.56 and B
X

= 0.57± 0.03.
We assume a Gaussian prior of C

X

= �0.4± 0.2, con-
sistent with self-similar evolution and a 50% uncertainty.
There are relatively few observational constraints on the
normalization of the Y

X

�M500 relation at z > 0.3.
However, this level of C

X

uncertainty was chosen to
match the prior assumed in Vikhlinin et al. (2009b),
which was in turn motivated by constraints from the sim-
ulations of Kravtsov et al. (2006). The 1� prior on C

X

would correspond to a 6% di↵erence in the mass calibra-
tion between z = 0.0 and 0.6. For the highest redshift
cluster in this work, z = 1.074, this would correspond to
an additional 11% uncertainty in the mass calibration,
and a 15% total uncertainty when also considering the
prior on A

X

.
We assume a Gaussian prior of D

X

= 0.12 ± 0.08,
which we truncate below 0.02 and where D

X

= 0.12 cor-
responds to a 12% log-normal scatter in Y

X

for a given
mass. This scatter has been measured to have values
ranging from 0-12% (Vikhlinin et al. 2009a; Mantz et al.
2010a). Analogous to Vikhlinin et al. (2009b), for our
cosmological analysis we have chosen a prior centered
on a value which is consistent with simulations (e.g.,
Kravtsov et al. 2006). Although we have assumed a
larger uncertainty on the scatter than the range typi-
cally found in simulations, this uncertainty is negligible
for our cosmological constraints, see Section 6.

3.1.2. SZ: ⇣ �M500

As in V10, we use the detection significance ⇠ as an SZ
mass proxy. However, since the relation between ⇠ and
halo mass is complicated by the comparable e↵ects of
intrinsic scatter and instrumental noise, we introduce the
unbiased significance, ⇣: the average detection signal-to-
noise of a simulated cluster, measured across many noise
realizations, evaluated at the preferred position and filter
scale of that cluster as determined by fitting the cluster
in the absence of noise.
We relate unbiased significance ⇣ to the detection sig-

nificance ⇠ as follows. Firstly, ⇣ is related to h⇠i through
the relation

⇣ =
p

h⇠i2 � 3 (2)

at ⇠ > 2. This maximization bias comes from having
maximized ⇠ across possible cluster positions and filters
scales, e↵ectively adding three degrees of freedom to the
fit with ⇠ analogous to a �2. Additionally, h⇠i relates to
⇠ by a Gaussian scatter of unit width. Simulations have
been used to verify that these approximations introduce
negligible bias or scatter compared to the Poisson noise
of the sample. For further details we refer the reader to
V10.
We assume a ⇣ �M500 relation of the form

⇣ = A
SZ

✓
M500

3⇥ 1014M�h�1

◆
BSZ

✓
E(z)

E(0.6)

◆
CSZ

, (3)

parameterized by the normalization A
SZ

, the slope B
SZ

,
the redshift evolution C

SZ

, and a log-normal scatter,
D

SZ

, on ⇣. V10 motivated the form of this relation
based on physical arguments, and the expected range
of these parameters based on self-similar arguments. In
V10, the cluster mass was defined within a spherical re-
gion in which the density is equal to 200 times the mean

matter density at the cluster redshift. In this work, to be
consistent with the Y

X

�M500 relation, we are defining
the cluster mass as M500, the mass in a spherical radius,
r500, within which the density is equal to 500 times the
critical density of the universe at the cluster redshift.
This change has motivated a change in the redshift evo-
lution term from (1+z) to E(z), because of the expected
self-similar scaling between Y

SZ

andM500 (e.g., Kravtsov
et al. 2006). In addition, we allow for a correlated scatter
between ⇣ and Y

X

with a correlation coe�cient ⇢, which
we allow to uniformly vary between 0.02 and 0.98, but
away from 0 and 1 for numerical reasons.
Analogous to V10 and summarized in Section 2.1.1,

we have used simulated SZ maps to characterize the
scaling between ⇣ and cluster mass. We have repeated
this exercise to match the form of the scaling given in
equation 3, and we give the Gaussian priors in Table 2.
The fractional uncertainty on each parameter matches
V10, except for the log-normal scatter, for which we al-
low a larger uncertainty in this work. However, this un-
certainty remains negligible for these cosmological con-
straints, see Section 6.

3.2. Likelihood Model

The analysis method employed in this work closely mir-
rors the one presented by V10 with extensions to incor-
porate the X-ray data. In V10, the parameter space was
explored through importance sampling of pre-existing
WMAP MCMC chains. In this work, we have elected
to utilize a full MCMC algorithm. This is accomplished
through the use of the CosmoMC analysis package, where
we have included the cluster abundance likelihood as an
additional module in the CosmoMC likelihood calcula-
tion. Among the numerous advantages to this approach
is the ability to enforce quantitative convergence crite-
ria as well as the optional inclusion of supplemental data
sets.
Each step in the Markov chain selects a new point

in the joint cosmological and scaling relation parame-
ter space. Prior to passing these variables to the cluster
likelihood evaluation, we use the Code for Anisotropies in
the Microwave Background (CAMB) (Lewis et al. 2000)
to compute the matter power spectrum at 20 logarithmi-
cally spaced redshifts between 0 < z < 2.5. The matter
power spectra, as well as the proposed scaling relation
and relevant cosmological parameters, are the inputs to
the cluster likelihood function.
At this point, the analysis follows a similar path to that

laid out by V10. First, the matter power spectra and
cosmology are used to calculate a mass function based
upon the Tinker et al. (2008) prescription, which we cal-
culate for an over-density of � = 500 ⌦

m

(z), to match
our cluster mass definition in Section 3.1. As noted in
Tinker et al. (2008), this function predicts the halo abun-
dance as a function of input cosmology across a mass
range of 1011h�1M�  M  1015h�1M� and a redshift
range of 0  z  2.5. Tinker et al. (2008) claim an
overall calibration of their mass function to simulations
of . 5%. Stanek et al. (2010) found that the inclusion
of non-gravitational physics can shift the normalization
of the mass function by ⇠ 10% along the mass direc-
tion. However, this e↵ect is approximately degenerate
with an uncertainty between intra-cluster gas observables
and mass, which we account for explicitly in our scaling
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Figure 1. Clay-Megacam color-term measurement. Data points are the photom-
etry of point sources that have been matched between the Clay-Megacam and
IMACS catalogs, the latter of which has already been transformed to the SDSS
system. The best-fit lines, whose slopes are equal to the color-term coefficients,
are also shown.
(A color version of this figure is available in the online journal.)

Table 2 lists the basic imaging information for the five
clusters. Depths are estimated from the median magnitude of
sources whose signal-to-noise ratio is five. Seeing is estimated
in the WL band, r ′.

We test the effect of photometric zero-point errors on the
final WL-SZ mass ratios. Systematic errors in photometry enter
into the mass analysis through the estimation of the critical
surface density for each cluster (Section 4.2). We estimate this
quantity using publicly available photometric redshift catalogs
of external fields, to which we apply the same photometric
cuts as are applied to the Megacam catalogs. If there is an
offset in the Megacam i ′-band zero point relative to that of the
standard catalog, then we effectively probe a population that
is different than that from which we infer the source redshift
distribution. We test the effect of photometric error, δi , by
cutting the standard photo-z catalogs at iCFHT > 24 − δi and
repeating the full analysis. The level of photometric accuracy
estimated here (5%) causes changes in the WL-SZ mass ratios at
the sub-percent level, which is significantly subdominant to the
statistical uncertainty and the largest systematic uncertainties.

Table 2
Imaging Data

Cluster Name Magnitude of 5σ Point Source r Seeing

g r i

SPT-CL J0516-5430 27.1 26.7 26.0 0.′′67
SPT-CL J2022-6323 26.3 26.2 25.3 0.′′88
SPT-CL J2030-5638 26.4 26.2 25.4 0.′′80
SPT-CL J2032-5627 25.9 25.8 24.4 0.′′82
SPT-CL J2135-5726 26.6 26.1 25.4 0.′′89

Notes. Basic properties of the imaging of the five clusters.
Column 1: R12 cluster designation.
Columns 2–4: the median magnitude of sources whose signal-to-noise ra-
tio is five.
Column 5: the median of the stellar FWHM across the entire coadded image.

4. CREATING SHEAR CATALOGS

In this section, we summarize the standard theoretical frame-
work on which WL mass measurements rest, including the two
primary quantities that must be estimated from data: the critical
surface density and the reduced shear.

4.1. Tangential Shear

Weak gravitational lensing of extended sources by spherically
symmetric mass overdensities induces a mean shear in a
direction oriented tangentially to the center of mass. Tangential
shear, γ+, is calculated from the Cartesian components of shear,
(γ1, γ2), as

γ+ = −γ1 cos(2φ) − γ2 sin(2φ) (4)

(see, for example, Mellier 1999, Section 2, for an overview
of WL shear). Indices i ∈ {1, 2} correspond to horizontal and
vertical image coordinates. Here, γ1 is the component along the
horizontal axis (position angle φ = 0◦) and γ2 is the shear at
position angle φ = 45◦. Cross shear is calculated as

γ× = −γ1 sin(2φ) + γ2 cos(2φ), (5)

this is the shear component oriented at 45◦ with respect to γ+.
The azimuthally averaged cross shear 〈γ×〉 as a function of
radius provides a diagnostic for residual systematics, because no
astrophysical effects, including lensing, produce such a signal.
As a consequence, a non-zero 〈γ×〉 indicates the presence of
some types of residual systematic error, though we note that
this is not an exhaustive test.

The mean tangential shear as a function of radial distance in
the plane of the sky at the cluster redshift, R, depends on the
projected surface density, Σ(R), as (Miralda-Escude 1995)

〈γ+〉(R) = 〈Σ〉(< R) − Σ(R)
Σcrit

. (6)

This depends on the critical surface density,

Σcrit = c2

4πG

1
Dlβ

, (7)

where c is the speed of light, G is the gravitational constant, and
β ≡ Dls/Ds is the lensing efficiency. Quantities D are angular-
diameter distances, and l indicates the lens (the cluster) while s
indicates sources.

The observable quantity is not the shear but the reduced shear,
g, which relates to the shear as

γ = (1 − κ)g (8)
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etry of point sources that have been matched between the Clay-Megacam and
IMACS catalogs, the latter of which has already been transformed to the SDSS
system. The best-fit lines, whose slopes are equal to the color-term coefficients,
are also shown.
(A color version of this figure is available in the online journal.)

Table 2 lists the basic imaging information for the five
clusters. Depths are estimated from the median magnitude of
sources whose signal-to-noise ratio is five. Seeing is estimated
in the WL band, r ′.

We test the effect of photometric zero-point errors on the
final WL-SZ mass ratios. Systematic errors in photometry enter
into the mass analysis through the estimation of the critical
surface density for each cluster (Section 4.2). We estimate this
quantity using publicly available photometric redshift catalogs
of external fields, to which we apply the same photometric
cuts as are applied to the Megacam catalogs. If there is an
offset in the Megacam i ′-band zero point relative to that of the
standard catalog, then we effectively probe a population that
is different than that from which we infer the source redshift
distribution. We test the effect of photometric error, δi , by
cutting the standard photo-z catalogs at iCFHT > 24 − δi and
repeating the full analysis. The level of photometric accuracy
estimated here (5%) causes changes in the WL-SZ mass ratios at
the sub-percent level, which is significantly subdominant to the
statistical uncertainty and the largest systematic uncertainties.
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Imaging Data
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Notes. Basic properties of the imaging of the five clusters.
Column 1: R12 cluster designation.
Columns 2–4: the median magnitude of sources whose signal-to-noise ra-
tio is five.
Column 5: the median of the stellar FWHM across the entire coadded image.

4. CREATING SHEAR CATALOGS

In this section, we summarize the standard theoretical frame-
work on which WL mass measurements rest, including the two
primary quantities that must be estimated from data: the critical
surface density and the reduced shear.

4.1. Tangential Shear

Weak gravitational lensing of extended sources by spherically
symmetric mass overdensities induces a mean shear in a
direction oriented tangentially to the center of mass. Tangential
shear, γ+, is calculated from the Cartesian components of shear,
(γ1, γ2), as

γ+ = −γ1 cos(2φ) − γ2 sin(2φ) (4)

(see, for example, Mellier 1999, Section 2, for an overview
of WL shear). Indices i ∈ {1, 2} correspond to horizontal and
vertical image coordinates. Here, γ1 is the component along the
horizontal axis (position angle φ = 0◦) and γ2 is the shear at
position angle φ = 45◦. Cross shear is calculated as

γ× = −γ1 sin(2φ) + γ2 cos(2φ), (5)

this is the shear component oriented at 45◦ with respect to γ+.
The azimuthally averaged cross shear 〈γ×〉 as a function of
radius provides a diagnostic for residual systematics, because no
astrophysical effects, including lensing, produce such a signal.
As a consequence, a non-zero 〈γ×〉 indicates the presence of
some types of residual systematic error, though we note that
this is not an exhaustive test.

The mean tangential shear as a function of radial distance in
the plane of the sky at the cluster redshift, R, depends on the
projected surface density, Σ(R), as (Miralda-Escude 1995)

〈γ+〉(R) = 〈Σ〉(< R) − Σ(R)
Σcrit

. (6)

This depends on the critical surface density,

Σcrit = c2

4πG

1
Dlβ

, (7)

where c is the speed of light, G is the gravitational constant, and
β ≡ Dls/Ds is the lensing efficiency. Quantities D are angular-
diameter distances, and l indicates the lens (the cluster) while s
indicates sources.

The observable quantity is not the shear but the reduced shear,
g, which relates to the shear as

γ = (1 − κ)g (8)
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Figure 1. Clay-Megacam color-term measurement. Data points are the photom-
etry of point sources that have been matched between the Clay-Megacam and
IMACS catalogs, the latter of which has already been transformed to the SDSS
system. The best-fit lines, whose slopes are equal to the color-term coefficients,
are also shown.
(A color version of this figure is available in the online journal.)

Table 2 lists the basic imaging information for the five
clusters. Depths are estimated from the median magnitude of
sources whose signal-to-noise ratio is five. Seeing is estimated
in the WL band, r ′.

We test the effect of photometric zero-point errors on the
final WL-SZ mass ratios. Systematic errors in photometry enter
into the mass analysis through the estimation of the critical
surface density for each cluster (Section 4.2). We estimate this
quantity using publicly available photometric redshift catalogs
of external fields, to which we apply the same photometric
cuts as are applied to the Megacam catalogs. If there is an
offset in the Megacam i ′-band zero point relative to that of the
standard catalog, then we effectively probe a population that
is different than that from which we infer the source redshift
distribution. We test the effect of photometric error, δi , by
cutting the standard photo-z catalogs at iCFHT > 24 − δi and
repeating the full analysis. The level of photometric accuracy
estimated here (5%) causes changes in the WL-SZ mass ratios at
the sub-percent level, which is significantly subdominant to the
statistical uncertainty and the largest systematic uncertainties.

Table 2
Imaging Data

Cluster Name Magnitude of 5σ Point Source r Seeing

g r i

SPT-CL J0516-5430 27.1 26.7 26.0 0.′′67
SPT-CL J2022-6323 26.3 26.2 25.3 0.′′88
SPT-CL J2030-5638 26.4 26.2 25.4 0.′′80
SPT-CL J2032-5627 25.9 25.8 24.4 0.′′82
SPT-CL J2135-5726 26.6 26.1 25.4 0.′′89

Notes. Basic properties of the imaging of the five clusters.
Column 1: R12 cluster designation.
Columns 2–4: the median magnitude of sources whose signal-to-noise ra-
tio is five.
Column 5: the median of the stellar FWHM across the entire coadded image.

4. CREATING SHEAR CATALOGS

In this section, we summarize the standard theoretical frame-
work on which WL mass measurements rest, including the two
primary quantities that must be estimated from data: the critical
surface density and the reduced shear.

4.1. Tangential Shear

Weak gravitational lensing of extended sources by spherically
symmetric mass overdensities induces a mean shear in a
direction oriented tangentially to the center of mass. Tangential
shear, γ+, is calculated from the Cartesian components of shear,
(γ1, γ2), as

γ+ = −γ1 cos(2φ) − γ2 sin(2φ) (4)

(see, for example, Mellier 1999, Section 2, for an overview
of WL shear). Indices i ∈ {1, 2} correspond to horizontal and
vertical image coordinates. Here, γ1 is the component along the
horizontal axis (position angle φ = 0◦) and γ2 is the shear at
position angle φ = 45◦. Cross shear is calculated as

γ× = −γ1 sin(2φ) + γ2 cos(2φ), (5)

this is the shear component oriented at 45◦ with respect to γ+.
The azimuthally averaged cross shear 〈γ×〉 as a function of
radius provides a diagnostic for residual systematics, because no
astrophysical effects, including lensing, produce such a signal.
As a consequence, a non-zero 〈γ×〉 indicates the presence of
some types of residual systematic error, though we note that
this is not an exhaustive test.

The mean tangential shear as a function of radial distance in
the plane of the sky at the cluster redshift, R, depends on the
projected surface density, Σ(R), as (Miralda-Escude 1995)

〈γ+〉(R) = 〈Σ〉(< R) − Σ(R)
Σcrit

. (6)

This depends on the critical surface density,

Σcrit = c2

4πG

1
Dlβ

, (7)

where c is the speed of light, G is the gravitational constant, and
β ≡ Dls/Ds is the lensing efficiency. Quantities D are angular-
diameter distances, and l indicates the lens (the cluster) while s
indicates sources.

The observable quantity is not the shear but the reduced shear,
g, which relates to the shear as

γ = (1 − κ)g (8)
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Figure 1. Clay-Megacam color-term measurement. Data points are the photom-
etry of point sources that have been matched between the Clay-Megacam and
IMACS catalogs, the latter of which has already been transformed to the SDSS
system. The best-fit lines, whose slopes are equal to the color-term coefficients,
are also shown.
(A color version of this figure is available in the online journal.)

Table 2 lists the basic imaging information for the five
clusters. Depths are estimated from the median magnitude of
sources whose signal-to-noise ratio is five. Seeing is estimated
in the WL band, r ′.

We test the effect of photometric zero-point errors on the
final WL-SZ mass ratios. Systematic errors in photometry enter
into the mass analysis through the estimation of the critical
surface density for each cluster (Section 4.2). We estimate this
quantity using publicly available photometric redshift catalogs
of external fields, to which we apply the same photometric
cuts as are applied to the Megacam catalogs. If there is an
offset in the Megacam i ′-band zero point relative to that of the
standard catalog, then we effectively probe a population that
is different than that from which we infer the source redshift
distribution. We test the effect of photometric error, δi , by
cutting the standard photo-z catalogs at iCFHT > 24 − δi and
repeating the full analysis. The level of photometric accuracy
estimated here (5%) causes changes in the WL-SZ mass ratios at
the sub-percent level, which is significantly subdominant to the
statistical uncertainty and the largest systematic uncertainties.
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Notes. Basic properties of the imaging of the five clusters.
Column 1: R12 cluster designation.
Columns 2–4: the median magnitude of sources whose signal-to-noise ra-
tio is five.
Column 5: the median of the stellar FWHM across the entire coadded image.

4. CREATING SHEAR CATALOGS

In this section, we summarize the standard theoretical frame-
work on which WL mass measurements rest, including the two
primary quantities that must be estimated from data: the critical
surface density and the reduced shear.

4.1. Tangential Shear

Weak gravitational lensing of extended sources by spherically
symmetric mass overdensities induces a mean shear in a
direction oriented tangentially to the center of mass. Tangential
shear, γ+, is calculated from the Cartesian components of shear,
(γ1, γ2), as

γ+ = −γ1 cos(2φ) − γ2 sin(2φ) (4)

(see, for example, Mellier 1999, Section 2, for an overview
of WL shear). Indices i ∈ {1, 2} correspond to horizontal and
vertical image coordinates. Here, γ1 is the component along the
horizontal axis (position angle φ = 0◦) and γ2 is the shear at
position angle φ = 45◦. Cross shear is calculated as

γ× = −γ1 sin(2φ) + γ2 cos(2φ), (5)

this is the shear component oriented at 45◦ with respect to γ+.
The azimuthally averaged cross shear 〈γ×〉 as a function of
radius provides a diagnostic for residual systematics, because no
astrophysical effects, including lensing, produce such a signal.
As a consequence, a non-zero 〈γ×〉 indicates the presence of
some types of residual systematic error, though we note that
this is not an exhaustive test.

The mean tangential shear as a function of radial distance in
the plane of the sky at the cluster redshift, R, depends on the
projected surface density, Σ(R), as (Miralda-Escude 1995)

〈γ+〉(R) = 〈Σ〉(< R) − Σ(R)
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This depends on the critical surface density,
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where c is the speed of light, G is the gravitational constant, and
β ≡ Dls/Ds is the lensing efficiency. Quantities D are angular-
diameter distances, and l indicates the lens (the cluster) while s
indicates sources.

The observable quantity is not the shear but the reduced shear,
g, which relates to the shear as
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Weak	
  lensing	
  

Advantages	
  
1.  Extremely	
  simple	
  theore@cal	
  

rela@onship	
  between	
  total	
  
mass	
  and	
  observables	
  
–  A	
  key	
  piece	
  of	
  evidence	
  for	
  

the	
  existence	
  of	
  dark	
  maver	
  
–  Independent	
  of	
  maver’s	
  

dynamical	
  state	
  or	
  history	
  
2.  Rela@vely	
  straighworward	
  to	
  

realis@cally	
  simulate	
  in	
  the	
  
same	
  N-­‐body	
  simula@ons	
  that	
  
cosmological	
  fixng	
  func@ons	
  
are	
  tuned	
  to	
  
–  Ray	
  tracing	
  
–  Source	
  selec@on	
  

Challenges	
  
1.  Accurately	
  es@ma@ng	
  

reduced	
  shear	
  
–  Correct	
  for	
  the	
  smearing	
  and	
  

shearing	
  by	
  anisotropic	
  point-­‐
spread	
  func@ons	
  

–  Cluster	
  galaxies	
  contaminate	
  
shear	
  profiles	
  

2.  Accurately	
  es@ma@ng	
  source	
  
redshiF	
  distribu@on	
  
–  Photo-­‐z’s	
  are	
  hard!	
  
–  Availability	
  of	
  photo-­‐z’s	
  at	
  very	
  

faint	
  magnitudes	
  or	
  very	
  high	
  
redshiF	
  is	
  scant	
  



South	
  Pole	
  Telescope	
  

•  (Sub)millimeter	
  wavelength	
  
telescope:	
  

–  10	
  meter	
  aperture	
  
–  1’	
  FWHM	
  beam	
  at	
  150	
  GHz	
  
–  Off-­‐axis	
  Gregorian	
  op@cs	
  design	
  
–  20	
  micron	
  RMS	
  surface	
  accuracy	
  
–  1	
  arc-­‐second	
  poin@ng	
  
–  Fast	
  scanning,	
  up	
  to	
  4	
  deg/sec	
  in	
  

azimuth	
  
•  SZ	
  receiver:	
  

–  1	
  sq.	
  deg	
  FOV	
  
–  ~960	
  background	
  limited	
  pixels	
  
–  Observe	
  in	
  3+	
  bands	
  between	
  95-­‐220	
  

GHz	
  simultaneously	
  	
  
–  Modular	
  focal	
  plane	
  

•  Polarimeters	
  are	
  currently	
  deployed	
  
for	
  CMB	
  polariza@on	
  and	
  deep-­‐SZ	
  
studies	
  (SPTpol)	
  


