Weak lensing masses of SZ selected clusters from the South Pole Telescope survey

Will High U. Chicago and KICP

Fall 2012

In collaboration with

- SPT team: John Carlstrom (PI)
- Lensing team: Henk Hoekstra, Tim Schrabback, Nicha Leethochawalit, Jen Helsby, Doug Applegate, Jörg Dietrich

Special thanks to

Megacam team: Susan Tokarz, Maureen Conrad, Bill, Wyatt, Brian McLeod (PI), et al.
DES mocks team: Risa Wechsler, Michael Busha, Matt Becker, et al.

What causes this?

It's not just weak lensing. Systematic errors in X-ray, SZ, and O/ IR mass-observables propagate through the system to create (or hide) discrepancies. *Lesson: calibrate mass-observables jointly in fully self-consistent way. If you do this, you find the field is in a significantly worse state than stated systematic errors in previous published works would have you believe.*

Cluster-abundance cosmology

(full sky)

(full sky)

zb/Nb

1000

500

0

0

0.5

- Cosmological parameters:
 - Dark energy equation of state: w = P/ρ
 - Other Λ CDM extensions: f_{NI} , Σm_{v}
- Dominant systematic uncertainty in w constraints is cluster mass
- Absolutely critical to have empirical measurements of total mass:
 - Must not rely entirely on N-body sims
 - Weak lensing is one of only a few direct measures of total mass
 - Close the loop: tie to N-body simulations with realism, because that's where the mass function comes from

1

 \mathbf{Z}

1.5

2

Cluster surveys

Adapted from Allen, Evrard, & Mantz (2012)

The Sunyaev-Zel'dovich effect

Take-home message #1

SZ signal is not an emissive process but a spectral disortion, so with beam well matched to the size of clusters, it's nearly redshift independent.

Take-home message #2

SZ signal is a direct probe of total thermal energy, and so is a good proxy for cluster mass.

South Pole Telescope detected clusters

Calibrating mass-observables with weak lensing

Weak lensing

Weak lensing

Williamson, Oluseyi, & Roe (2007)

SPT targeted weak lensing sample

33 clusters at 0.3 < z < 1.3
Complete SZ, X-ray coverage
Spectroscopy, Spitzer NIR, and multiband OIR from the ground

Ground WL sample

- Magellan/Megacam camera
- 19 clusters at 0.3 < z < 0.6
- Imaging in (*u*)*gri* in 2011A+B

Space WL sample

- HST/ACS camera
- 14 clusters at 0.6 < z < 1.3
- Imaging in *F606W* and *F814W* in Cycle 18 and Cycle 19
- Added deep imaging with VLT
- Observations ongoing

SPT-CL J0348-4514, z = 0.39, $M_{500} = 5.2 \times 10^{14} M_{sun}$

SPT-CL J0546-5345, z = 1.07, M₅₀₀ = 8.0×10¹⁴ M_{sun}

X

755

760

765

Stellar locus photometric calibration

SLR: Stellar Locus Regression Allows for calibration of colors and magnitudes without the traditional use of standard star fields

Successfully used by Weighing the Giants to obtain photo-z's

Adapted from High et al. (2009)

SLR gives dereddened colors to 0.01–0.03 mag (SDSS) and magnitudes to 0.05 mag (2MASS).

Stellar locus photometric calibration

SLR gives dereddened colors to 0.01–0.03 mag (SDSS) and magnitudes to 0.05 mag (2MASS).

Estimating shear

Shear pipelines that we use:

- ground data: Henk Hoekstra (HH)
- space data: Tim Schrabback (TS)

Full pipelines blind-tested by the **Shear Testing Program** (STEP: Heymans et al. 2006; Massey et al. 2007). Includes realistic point-spread functions.

STEP bias statistics:

 $\langle \tilde{\gamma}_1 \rangle - \gamma_1^{\text{input}} = m_1 \gamma_1^{\text{input}} + c_1$ $\langle \tilde{\gamma}_2 \rangle - \gamma_2^{\text{input}} = m_2 \gamma_2^{\text{input}} + c_2.$

Shear code recovers truth with no measurable additive bias (c) and with multiplicative bias (m) of 2% or better.

Massey et al. (2007)

Magellan/Megacam PSF performance

High et al. (2012)

PSF polarization residuals are 0.003 to 0.005 rms, no appreciable residual in radial bins.

Source redshift distribution and cluster-galaxy decontamination

Source redshift distribution and cluster-galaxy decontamination

SPT-CL J2145-5644, z = 0.48, $M_{500} = 6.5 \times 10^{14} M_{sun}$

SPT-CL J2145-5644, z = 0.48, $M_{500} = 6.5 \times 10^{14} M_{sun}$

SPT-CL J0348-4514, z = 0.39, $M_{500} = 5.2 \times 10^{14} M_{sun}$

SPT-CL J0348-4514, z = 0.39, $M_{500} = 5.2 \times 10^{14} M_{sun}$

Cyan contours: к

SPT-CL J0546-5345, z = 1.07, $M_{500} = 8.0 \times 10^{14} M_{sun}$

SPT-CL J0546-5345, z = 1.07, $M_{500} = 8.0 \times 10^{14} M_{sun}$

Cyan contours: к

SPT-CL J2331-5051, z = 0.58, $M_{500} = 5.1 \times 10^{14} M_{sun}$

Cyan contours: к

SPT-CL J2331-5051, z = 0.58, $M_{500} = 5.1 \times 10^{14} M_{sun}$

SPT-CL J2331-5051, z = 0.58, $M_{500} = 5.1 \times 10^{14} M_{sun}$

Cyan contours: к

SPT-CL J2106-5844, z = 1.13, $M_{500} = 8.4 \times 10^{14} M_{sun}$

SPT-CL J2106-5844, z = 1.13, $M_{500} = 8.4 \times 10^{14} M_{sun}$

Calibration to N-body simulations

Article	NFW WL mass bias
Becker & Kravtsov 2012	-5% to -10%
Rasia et al. 2012	-5% to -10%
Bahe et al. 2012	-5%
High et al. 2012	-5% to -10%

Our tests:

• Use two flavors of Dark Energy Survey mocks at 220 deg² and 5k deg²; fake galaxies with realistic color, magnitude, and clustering properties (ADDGALS, R. Wechsler et al.)

- Replicate our color and magnitude selection for all massive 0.25 < z < 0.65 halos
- Also geared up on simulations from Becker & Kravtsov (2012)

WL NFW masses recover truth with overall bias of -5% to -10%.

WL test of joint SZ/X-ray masses

Mean calibration from ground sample: 1.26 ± 0.16

Mean calibration from <u>space</u> sample: 1.16 ± 0.26

High et al. (in prep.)

WL calibration of $M - Y_{sz}$: A first look at the SPT data

 $Y_{\rm SZ}$ measured with Rapid Gridded Likelihood Estimator (T. Montroy et al. in prep.).

Assume self-similar scaling with free normalization parameter,

 $\frac{M_{500}}{10^{14} M_{\odot}} = e^A \left(\frac{Y_{\rm sph} D_A^2 E(z)^{-2/3}}{10^{-5} \,{\rm Mpc}^2} \right)^{3/5}$

- 19 SPT-detected clusters used here:
- 7 from space sample
- 12 from ground sample

Aghanim et al. (2012) and Applegate et al. (2012) have also given evidence for -30% WL biases in LoCuSS results (Okabe et al. 2010; Marrone et al. 2012).

These results are preliminary.

High et al. (in prep.)

Implication for cosmology

Benson et al. (2011)

Summary

- Weak lensing quality data obtained for 33 clusters
 - 19 clusters at 0.3 < z < 0.6 with Magellan/Megacam
 - 14 clusters at 0.6 < z < 1.3 with HST/ACS
 - o full SZ, X-ray, and spectroscopic overlap
- First look at 28 clusters
 - o provides 14% direct mass calibration
 - o shows weak evidence for low mass estimates
- Analysis now undergoing refinement and scrutiny
- o First
 - o WL detections using Megacam at Magellan
 - direct calibration of code used on real data to N-body simulations
- Matching the statistical power of the SPT_{CL} data set will require a sub-3% calibration of mass. SPT_{CL} poised to achieve $\delta w = 0.035$
- o Ancillary science

EXTRA SLIDES

Weak lensing

Observable quantity: reduced shear, g. $\gamma = (1$

$$\gamma = (1 - \kappa)g$$

Shear relates to mass via:

$$\langle \gamma_+ \rangle(R) = \frac{\langle \Sigma \rangle(< R) - \Sigma(R)}{\Sigma_{\rm crit}}.$$

The signal is a function of lens and source redshifts through:

$$\Sigma_{
m crit}=rac{c^2}{4\pi\,G}rac{1}{D_{
m l}eta}, \qquad ext{ where } \qquad eta\equiv D_{
m ls}/D_s$$

A model for the project mass density, Σ , determines both the shear and convergence, and therefore the reduced shear.

The key ingredients to weak lensing analyses are

- 1. estimating *reduced shear* and
- 2. estimating *source redshifts*.

Weak lensing

Advantages

- 1. Extremely simple theoretical relationship between *total mass* and observables
 - A key piece of evidence for the existence of dark matter
 - Independent of matter's dynamical state or history
- 2. Relatively straightforward to realistically simulate in the same *N*-body simulations that cosmological fitting functions are tuned to
 - Ray tracing
 - Source selection

Challenges

- 1. Accurately estimating reduced shear
 - Correct for the smearing and shearing by anisotropic pointspread functions
 - Cluster galaxies contaminate shear profiles
- 2. Accurately estimating source redshift distribution
 - Photo-z's are hard!
 - Availability of photo-z's at very faint magnitudes or very high redshift is scant

South Pole Telescope

- (Sub)millimeter wavelength telescope:
 - 10 meter aperture
 - 1' FWHM beam at 150 GHz
 - Off-axis Gregorian optics design
 - 20 micron RMS surface accuracy
 - 1 arc-second pointing
 - Fast scanning, up to 4 deg/sec in azimuth
- SZ receiver:
 - 1 sq. deg FOV
 - ~960 background limited pixels
 - Observe in 3+ bands between 95-220 GHz simultaneously
 - Modular focal plane
- Polarimeters are currently deployed for CMB polarization and deep-SZ studies (SPTpol)